Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tardigrades can survive remarkable doses of ionizing radiation, up to about 1,000 times the lethal dose for humans. How they do so is incompletely understood. We found that the tardigrade Hypsibius exemplaris suffers DNA damage upon gamma irradiation, but the damage is repaired. We show that this species has a specific and robust response to ionizing radiation: irradiation induces a rapid upregulation of many DNA repair genes. This upregulation is unexpectedly extreme—making some DNA repair transcripts among the most abundant transcripts in the animal. By expressing tardigrade genes in bacteria, we validate that increased expression of some repair genes can suffice to increase radiation tolerance. We show that at least one such gene is important in vivo for tardigrade radiation tolerance. We hypothesize that the tardigrades’ ability to sense ionizing radiation and massively upregulate specific DNA repair pathway genes may represent an evolved solution for maintaining DNA integrity.more » « less
-
Klymkowsky, Michael (Ed.)Tardigrades, commonly known as ‘waterbears’, are eight-legged microscopic invertebrates renowned for their ability to withstand extreme stressors, including high osmotic pressure, freezing temperatures, and complete desiccation. Limb retraction and substantial decreases to their internal water stores results in the tun state, greatly increasing their ability to survive. Emergence from the tun state and/or activity regain follows stress removal, where resumption of life cycle occurs as if stasis never occurred. However, the mechanism(s) through which tardigrades initiate tun formation is yet to be uncovered. Herein, we use chemobiosis to demonstrate that tardigrade tun formation is mediated by reactive oxygen species (ROS). We further reveal that tuns are dependent on reversible cysteine oxidation, and that this reversible cysteine oxidation is facilitated by the release of intracellular reactive oxygen species (ROS). We provide the first empirical evidence of chemobiosis and map the initiation and survival of tardigrades via osmobiosis, chemobiosis, and cryobiosis.In vivoelectron paramagnetic spectrometry suggests an intracellular release of reactive oxygen species following stress induction; when this release is quenched through the application of exogenous antioxidants, the tardigrades can no longer survive osmotic stress. Together, this work suggests a conserved dependence of reversible cysteine oxidation across distinct tardigrade cryptobioses.more » « less
-
null (Ed.)Abstract Protein phosphorylation, which is one of the most important post-translational modifications (PTMs), is involved in regulating myriad cellular processes. Herein, we present a novel deep learning based approach for organism-specific protein phosphorylation site prediction in Chlamydomonas reinhardtii , a model algal phototroph. An ensemble model combining convolutional neural networks and long short-term memory (LSTM) achieves the best performance in predicting phosphorylation sites in C. reinhardtii. Deemed Chlamy-EnPhosSite, the measured best AUC and MCC are 0.90 and 0.64 respectively for a combined dataset of serine (S) and threonine (T) in independent testing higher than those measures for other predictors. When applied to the entire C. reinhardtii proteome (totaling 1,809,304 S and T sites), Chlamy-EnPhosSite yielded 499,411 phosphorylated sites with a cut-off value of 0.5 and 237,949 phosphorylated sites with a cut-off value of 0.7. These predictions were compared to an experimental dataset of phosphosites identified by liquid chromatography-tandem mass spectrometry (LC–MS/MS) in a blinded study and approximately 89.69% of 2,663 C. reinhardtii S and T phosphorylation sites were successfully predicted by Chlamy-EnPhosSite at a probability cut-off of 0.5 and 76.83% of sites were successfully identified at a more stringent 0.7 cut-off. Interestingly, Chlamy-EnPhosSite also successfully predicted experimentally confirmed phosphorylation sites in a protein sequence (e.g., RPS6 S245) which did not appear in the training dataset, highlighting prediction accuracy and the power of leveraging predictions to identify biologically relevant PTM sites. These results demonstrate that our method represents a robust and complementary technique for high-throughput phosphorylation site prediction in C. reinhardtii. It has potential to serve as a useful tool to the community. Chlamy-EnPhosSite will contribute to the understanding of how protein phosphorylation influences various biological processes in this important model microalga.more » « less
-
Summary The plant hormone abscisic acid (ABA) plays crucial roles in regulation of stress responses and growth modulation. Heterotrimeric G‐proteins are key mediators of ABA responses. Both ABA and G‐proteins have also been implicated in intracellular redox regulation; however, the extent to which reversible protein oxidation manipulates ABA and/or G‐protein signaling remains uncharacterized.To probe the role of reversible protein oxidation in plant stress response and its dependence on G‐proteins, we determined the ABA‐dependent reversible redoxome of wild‐type and Gβ‐protein null mutantagb1of Arabidopsis.We quantified 6891 uniquely oxidized cysteine‐containing peptides, 923 of which show significant changes in oxidation following ABA treatment. The majority of these changes required the presence of G‐proteins. Divergent pathways including primary metabolism, reactive oxygen species response, translation and photosynthesis exhibited both ABA‐ and G‐protein‐dependent redox changes, many of which occurred on proteins not previously linked to them.We report the most comprehensive ABA‐dependent plant redoxome and uncover a complex network of reversible oxidations that allow ABA and G‐proteins to rapidly adjust cellular signaling to adapt to changing environments. Physiological validation of a subset of these observations suggests that functional G‐proteins are required to maintain intracellular redox homeostasis and fully execute plant stress responses.more » « less
An official website of the United States government
